Title : Is two-step culture method a more efficacious approach for isolating mesenchymal stem cells from amniotic fluid?
Abstract:
Introduction: The acquisition of human mesenchymal stromal/stem cells (hMSCs) is imperative for therapeutic interventions. These versatile cells can be sourced from various fetal tissues often regarded as medical waste post-delivery. Fetal hMSCs are also procurable from aborted fetuses during the initial and early second trimesters, and amniotic fluid (hAF-MSCs) secured through amniocentesis aimed at prenatal diagnostics. This study endeavors to evaluate two economical strategies for isolating hAF-MSCs: the one-step and the two-step method, emphasizing their efficiency and potential applications in cell therapy and regenerative medicine.
Method: The comparative analysis entailed isolating hAF-MSCs using both one-step and two-step techniques. Subsequent assessment of the derived cells involved flow cytometry to detect MSC markers (CD44, CD90, and CD105) and to ascertain their capability for adipogenic and osteogenic differentiation. This methodical approach enabled an evaluation of the effectiveness of each technique in deriving a homogeneous population of hAF-MSCs suited for therapeutic applications.
Results: Examination revealed that the amniotic fluid harbors various stem/progenitor cell subpopulations characterized by distinct adhesion properties. The two-step method proved superior in deriving hAF-MSCs, especially evident in the expansion of slowly adhering amniocytes into a more uniform population of hAF-MSCs. Interestingly, prior literature scarcely addresses the adhesion characteristics of hAF-MSCs, underscoring a novel aspect of our findings.
Conclusion: This study's outcomes highlight the two-step method as a more efficacious approach for isolating hAF-MSCs, suggesting the importance of considering cell adhesion properties during isolation processes. While additional research is necessary to fully understand the efficiency of cell adhesion in the derivation of hMSCs from various sources, these initial findings pave the way for advancements in regenerative medicine and cell therapy, proposing novel considerations for optimized hMSC isolation techniques.
Keywords: two-step culture method, human mesenchymal stem cells (hMSCs), therapeutic interventions