A biopolymer is a polymer created by a living organism. Polymers, which are molecules made up of numerous smaller molecules called monomers, make up the majority of biological macromolecules. Typically, all of the monomers in a polymer are the same or highly similar to one another, and they are joined over and over to form the larger macromolecule.
These simple monomers can be joined together in a variety of ways to create complex biological polymers. The roles of macromolecules in living systems as information storage systems (such as DNA) and in biochemical synthesis have been widely investigated and understood, as have the roles of polymers in biological lubrication and their relationship to diseases like osteoarthritis and to remedies like tissue engineering.
Peptides can easily be converted into synthetic polymers, which are being researched for a variety of applications, including the creation of novel biomaterials and drug delivery/imaging.
Title : Application of vanadium and tantalum single-site zeolite catalysts in heterogeneous catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : Developing novel sensing platforms using nanostructures
Harry Ruda, University of Toronto, Canada
Title : Solid state UV cross-linking for advanced manufacturing
Huang WM, Nanyang Technological University, Singapore
Title : The effect of substitution of Mn by Pd on the structure and thermomagnetic properties of the Mn1−xPdxCoGe alloys (where x = 0.03, 0.05, 0.07 and 0.1)
Piotr Gebara, Czestochowa University of Technology, Poland
Title : Evaluation of mineral jelly as suitable waterproofing material for ammonium nitrate
Ramdas Sawleram Damse, HEMRL, India
Title : The role of tunable materials in next-gen reconfigurable antenna design
Nasimuddin, Institute for Infocomm Research, A-STAR, Singapore