Tissue engineering is the process of replicating a tissue's structural and spatial structure or function using cells and scaffolds. The goal of an ideal engineered tissue determines how it is made. Biocompatibility and the creation of a tissue that can imitate most of its natural biological functions are the major problems for therapeutic applications. Furthermore, an implanted tissue's vitality is linked to its ability to support circulatory networks. For various self-assembled tissues, adjustments and alterations in stromal thickness and extracellular matrix composition are described. Methods for producing tissue with a morphology and structure that closely resembles that of the native tissue, for incorporating capillary-like networks, and for reducing production time and costs are also discussed. The self-assembly approach produces a stroma that is free of exogenous material and can be used to create the fastest, cheapest, and closest-to-native tissue bioengineering for medicinal and basic research applications.
Title : Small activating RNA from concept to phase 2 clinical trials
Nagy Habib, MiNA Therapeutics Ltd, United Kingdom
Title : Mechanical modulation of cell response in 3D bioprinted hydrogels
Ruben F Pereira, University of Porto, Portugal
Title : Electroactive polymer-based smart scaffolds for tissue engineering and regenerative medicine
Federico Carpi, University of Florence, Italy
Title : Graphene “Hastalex®”, butterfly, and stem cells are set to revolutionise the development of human organs.
Alexander Seifalian, NanoRegMed Ltd, BioScience Innovation Centre, United Kingdom
Title : Design of 3D bioengineered personalized scaffolds to potentiate bone ingrowth and angiogenic network for oral tissues reconstruction
Christiane Salgado , Institute of Research and Innovation in Health(i3S), Brazil
Title : RADA16-I based scaffolds for wound healing and regenerative medicine
Deptula Milena, Medical University of Gdansk, Poland