Three-dimensional (3D) bioprinting is a cutting-edge technique that uses 3D printing's additive manufacturing technology to create live tissues such as blood vessels, bones, hearts, and skin. Using a layering technique, traditional 3D printing creates three-dimensional solid items from a computer file. A source material, such as plastic, is liquefied, and then the machine adds layer after layer to the platform until you have a fully formed object in the most typical variant. It goes without saying that printing organs is a "tad" more difficult. Researchers discovered in the early 2000s that living cells may be sprayed through the nozzles of inkjet printers without causing damage. It is not enough to have cells; they also require a supportive environment, which includes food, water, and oxygen. Microgels loaded with vitamins, proteins, and other life-sustaining substances now provide these conditions. Furthermore, researchers plant cells around 3D scaffolds comprised of biodegradable polymers or collagen to create conditions that promote the fastest and most efficient cell growth, allowing them to grow into fully functional tissue. Additive manufacturing, often known as three-dimensional (3D) printing, is generating significant advancements in a variety of fields, including engineering, manufacturing, art, education, and medical. Biocompatible materials, cells, and supporting components can now be 3D printed into complex 3D functioning living tissues, thanks to recent breakthroughs. 3D bioprinting is being used in regenerative medicine to meet the need for transplantable tissues and organs.
Title : Eliminating implants infections with nanomedicine: Human results
Thomas J Webster, Interstellar Therapeutics, United States
Title : Graphene, butterfly structures, and stem cells: A revolution in surgical implants
Alexander Seifalian, BioScience Innovation Centre, United Kingdom
Title : Biodistribution and gene targeting in regenerative medicine
Nagy Habib, Imperial College London, United Kingdom
Title : Precision in cartilage repair: Breakthroughs in biofabrication process optimization
Pedro Morouco, Polytechnic of Leiria, Portugal
Title : Innovative educational strategies in tissue engineering: Bridging theory and practice in higher education
Marissa Vacher, Leiden University of Applied Sciences, Netherlands
Title : Complete Blood Count (CBC) & immuno-inflammatory dysfunction in patients with behavioral disorders associated with psychosis
Lamia Said, University of Monastir Tunisia, Tunisia