Bone has the ability to regenerate as part of the healing process after an injury, as well as during skeletal development and ongoing remodelling throughout adulthood. In order to optimize skeletal repair and restore skeletal function, bone regeneration is composed of a well-orchestrated series of biological events of bone induction and conduction, involving a variety of cell types and intracellular and extracellular molecular-signaling pathways, with a definable temporal and spatial sequence, involving a number of cell types and intracellular and extracellular molecular-signalling pathways. The most common form of bone regeneration in the clinical context is fracture healing, which mimics the normal embryonic skeletogenesis pathway, including intramembranous and endochondral ossification. Bone tissue engineering (BTE) has been around for about three decades. The BTE discipline has witnessed enormous growth in interest and progress over the years, with an exponentially increasing number of papers and reviews published. BTE is a field that focuses on alternative therapy methods that, in theory, will eliminate the previously mentioned difficulties with currently employed clinical therapies (i.e., donor site morbidity, limited availability, immune rejection, and pathogen transfer). To attain the ultimate aim of developing bone grafts that improve bone repair and regeneration, BTE requires the collaboration of scientists, engineers, and surgeons.
Title : Electroactive polymer-based smart scaffolds for tissue engineering and regenerative medicine
Federico Carpi, University of Florence, Italy