Tissue engineering scaffolds strive to create biophysical and chemical signals that resemble the stem cell environment. Stem cells, on the other hand, may detect these features and alter their fate. Scientists use scaffold design and in vitro studies to try to explain these events, but the mechanisms involved are still unknown. Mechanical forces in cell behaviour, in particular, have only recently begun to gain attention. Mechanical stress, for example, can cause cell deformation and remodelling, which has a substantial impact on cellular function. Living cells also sustain or create forces, and mechanical loading causes deformation and remodelling, which has an impact on many aspects of human health and disease. As a result, stress in cell behaviour has received increased attention. It's difficult to model the constitutive behaviour of cells using biophysical cues. The stimuli are present in vivo, but reproducing their features in vitro is a difficulty.
Title : Small activating RNA from concept to phase 2 clinical trials
Nagy Habib, MiNA Therapeutics Ltd, United Kingdom
Title : Mechanical modulation of cell response in 3D bioprinted hydrogels
Ruben F Pereira, University of Porto, Portugal
Title : Electroactive polymer-based smart scaffolds for tissue engineering and regenerative medicine
Federico Carpi, University of Florence, Italy
Title : Graphene “Hastalex®”, butterfly, and stem cells are set to revolutionise the development of human organs.
Alexander Seifalian, NanoRegMed Ltd, BioScience Innovation Centre, United Kingdom
Title : Design of 3D bioengineered personalized scaffolds to potentiate bone ingrowth and angiogenic network for oral tissues reconstruction
Christiane Salgado , Institute of Research and Innovation in Health(i3S), Brazil
Title : RADA16-I based scaffolds for wound healing and regenerative medicine
Deptula Milena, Medical University of Gdansk, Poland