Tissue engineering is a rapidly growing scientific field that uses cell and/or cell combinations with biomaterials and/or biologically active molecules to create, repair, and/or replace cells, tissues, and organs. It aids in the production of materials that closely resemble the body's native tissue/tissues. Current medicines have been revolutionized as a result of tissue engineering, and the quality of life for millions of patients has improved. TE, although its many promises, has a number of limitations; translating these concepts into reality appears to be a difficult undertaking. One of the barriers is the inability of artificial materials to match the natural characteristics of tissues. This problem could be solved via nanotechnology and tailored nanoparticle engineering. This problem could be solved via nanotechnology and tailored nanoparticle engineering. Nanoparticles are distinguished by their nanoscale dimension, which allows them to develop important physical and chemical properties that improve their performance and hence make them useful in a variety of applications. Nanoparticles have just lately been employed in TE in order to increase mechanical and biological performance. Nanoparticles have an advantage in TE because of their small size and high surface-to-volume ratio, which is equivalent to peptides and small proteins. They are quickly absorbed by cells due to their ability to diffuse across membranes.
Title : Eliminating implants infections with nanomedicine: Human results
Thomas J Webster, Interstellar Therapeutics, United States
Title : Biodistribution and gene targeting in regenerative medicine
Nagy Habib, Imperial College London, United Kingdom
Title : Graphene, butterfly structures, and stem cells: A revolution in surgical implants
Alexander Seifalian, Nanotechnology & Regenerative Medicine Commercialisation Centre, London NW1 0NH, United Kingdom
Title : Precision in cartilage repair: Breakthroughs in biofabrication process optimization
Pedro Morouco, Polytechnic of Leiria, Portugal
Title : Keratin-TMAO wound dressing promote tissue recovery in diabetic rats via activation of M2 macrophages
Marek Konop, Medical University of Warsaw, Poland
Title : Assessing geometric simplifications in vertebral modeling for reliable numerical analysis of intervertebral discs
Oleg Ardatov, Vilnius University, Lithuania