Biomaterials advances have had a huge impact on medicine during the last few decades, changing tissue engineering, drug delivery, immunological engineering, and medical device manufacturing. Advances in molecular self-assembly, polymer synthesis, protein and peptide engineering, and microfabrication technologies have resulted in the development of next-generation "smart" biomaterials that can adapt their chemical and mechanical properties in response to changes in physiological parameters and exogenous stimuli. Due to their capacity to respond to biological, chemical, and physical stimuli such as pH, redox potential, enzyme activity, temperature, humidity, light, sound, and stress, these materials are sought after for medical and tissue engineering applications. Smart biomaterials can respond to changes in physiological factors as well as exogenous stimuli, and they continue to have an impact on many facets of modern medicine. Smart materials have the potential to accelerate the development of promising medicines and enhance the treatment of chronic diseases. The insertion of certain functional groups into biomaterials allows control over their physical, chemical, and biological properties, according to one technique for the design of smart biomaterials for tissue engineering.
Title : A revolution or surrender: The success and failures of tissue engineering and regenerative medicine
Thomas J Webster, Hebei University of Technology, United States
Title : Efficacy and safety outcomes in patients with chronic traumatic brain injury: Final analysis of the randomized, double-blind, surgical sham-controlled phase 2 STEMTRA trial
Bijan Nejadnik, SanBio, Inc, United States
Title : Light-based bioprinting: From bioink design to modulation of cell response in bioprinted hydrogels
Ruben F Pereira, University of Porto, Portugal
Title : Biofabrication of functional human intestinal tissue with villi and crypts using high-resolution 3D printing technique
Lindy Jang, Lawrence Livermore National Laboratory, United States
Title : Embracing the potential of biopolymer based hydrogel: The new frontier in chronic wound therapy
Madhu Gupta, School of Pharmaceutical Sciences, India
Title : A 3D -bioprinted in vitro adipose tissue model for the study of macrophage polarisation and function within metabolic disease.
Tiah Oates, University of Bristol, United Kingdom