ELOS 2022

Vladimir V Rumyantsev

Vladimir V Rumyantsev, Speaker at Photonics conferences
A.A. Galkin Institute for Physics and Engineering, Ukraine
Title : Features of electromagnetic excitations propagation in a photonic crystal with microcavities containing quantum dots


Designing and utilization of novel materials for manufacturing of the sources of coherent irradiation is currently a vast interdisciplinary area, which spans various theoretical and fundamental aspects of laser physics, condensed matter physics, nanotechnology, chemistry as well information science. Physical realization of corresponding devices requires the ability to manipulate the group velocity of propagation of electromagnetic pulses, which is accomplished by the use of the so-called polaritonic crystals. The latter represent a particular type of photonic crystals featured by a strong coupling between medium quantum excitations (excitons) and optical field.
The report is devoted to elucidation of the effect of point-like defects on electromagnetic excitations (polaritons) dispersion in a 1D and 2D array of microcavity (microresonator) with embedded one-level quantum dots. It is shown that the presence of vacancies in the microcavity and atomic (quantum dots) subsystems results in a substantial renormalization of polariton spectrum and thus in a considerable alteration of optical properties of the structure. Introduction of defects leads to an increase in the effective masses of polaritons and hence to a decrease of their group velocity.
Our model is primarily based on the virtual crystal approximation, which is often employed to examine quasiparticle excitations in sufficiently simple disordered superstructures. More complex systems usually require the use of more sophisticated methods such as the (one- or multinode) coherent potential approximation, the averaged T-matrix method and their various modifications.
The obtained numerical results help to obtain new composite polariton structures and expand the prospects for their use in the construction of solid-state devices with controlled propagation of electromagnetic waves.


Vladimir V. Rumyantsev is Chair of the Department of Theory of Complex Systems Dynamic Properties at A.A. Galkin Donetsk Institute for Physics and Engineering. He is Professor of Theoretical Physics and Nanotechnology Department at Donetsk National University. He received PhD in Theoretical Physics (1988) and Dr. Sci. in Condensed Matter Physics (2007). Prof. Rumyantsev has authored/co-authored 4 books, 2 chapters in books and more than 330 scientific publications. He is a member of the American Physical Society as well as Mediterranean Institute of Fundamental Physics (MIFP, Italy).